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Abstract. The performance of a pattern recognition system is characterized by 
its error rate and the reject rate tradeoff. The error rate can be directly evaluated 
from the reject function assuming a threshold t, which is a parameter that limits 
the reject and acceptance regions. In this paper, optimum rejection rule of a 
recognition system for three classes is used to calculate the reject function and 
the error rate evaluated directly from the reject rate. A Bayes decision rule as a 
function of threshold t is used to determine the minimum risk. A simple 
parametrization that considers the distance between means of the normal 
distribution of classes is presented. Finally, the rejection rate, the error rate and 
conditional risk were estimated in terms of the threshold t to illustrate the effect 
of the proposed parametrization and Bayes decision rule for minimum risk.  
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1   Introduction  

It is known that the Bayes error provides the lowest error rate for a given pattern 
classification problem. An optimum rejection rule and a general relation between the 
error and reject probabilities are presented by Chow (1970). There are several 
classical approaches used to estimate or to find bounds of the Bayes error including 
those proposed by Thumar et al. (1966) and Doermann (2004) which considered the 
second order dependency between the class and decision, and found that a combined-
based method renders better estimates than the classical methods of dependency-
based product approximation (DBPA). Pierson (1998) used boundary methods for 
estimating class separability since it does not require knowledge of the posterior 
distributions. In this work, optimum rejection rule of a recognition system to calculate 
the reject function and the error rate evaluated directly from reject rate and the results 
are illustrated for a case involving three classes, commonly found in actual 
classification problems but hardly described in the literature. The Bayes decision rule 
for minimum error and reject option for n classes considering the minimum risk, 
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assuming a threshold t with a simple parametrization for a three class case is 
described. 

2   Background 

2.1 Decision Rule for Minimum Error and Reject Option    

In actual classification problems where classes are not fully separable, it is unrealistic 
to expect absolute classification performance of the pattern recognition system. The 
object of a statistical classification problem is to reach the best possible performance. 
The question that arises is how to determine the optimum classification rate which can 
be answered by the determination of the Bayes error since the Bayes decision rule 
provides the lowest error rates (Tumer, 1996). 
In general, to assign a pattern x  to n classes wi (where i =1,…,n), a model for 
classification with a decision rule to partition the measurement space into n regions 
Ωi, i =1,…, n is needed.  The boundaries between the regions Ωi are known as the 
decision boundaries or decision surfaces; usually it is near to these boundaries that the 
highest probability of misclassifications can occur. In such situations, the decision on 
the pattern may be withheld or rejected until further information is available, this 
option is known as the reject option (Webb, 2002). 

According to the Bayes decision rule where assigning with minimum error a 
pattern x  to a class wi, we have that: 

iknikwpwp ki ≠=> ;,...,1,    )()( , (1) 

where p(w1),…, p(wn),are known prior probabilities.  

The optimum decision rule is to reject a pattern x  if the maximum of the posterior 
probabilities does not exceed some predefined threshold t, which can take values 
between 0 and 1 (0 ≤ t ≤1). (Chow, 1970; Pierson, 1998). More explicitly, the 
optimum recognition rule is to accept the pattern x  and to classify it as belonging to 
the kth class whenever the following is true: 
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and to reject the pattern whenever: 
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The term (1-t) (see Figure 2) indicates the maximum values that can be assigned to 
the posterior probability p(wi| x ) to do a correct classification of a measurement 
pattern.Through Bayes’s theorem, this posterior probability function is related to the 
class conditional density by: 
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 is the probability of pattern x . The class probability distributions p(wi) can be 
estimated using an iterative method  with the patterns belonging to each class (Baram, 
1999). 

For any fixed value of t, the decision rule (this is used for the correct classification 
of samples) partitions the pattern space into two disjointed sets (or regions) A(t) and 
R(t) given by: 
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where A(t) is the acceptance region which implies that once the maximum 
posterior probability exceeds the threshold (1-t), a classification decision can be 
made; R(t) is the rejection region where the equations (3) and (4) hold. The integral of 
regions A(t) and R(t) defines the reject rate r(t) and correct classification c(t) 
expressed as:  

, )()(
)(∫= tR

dxxptr  (9) 

which describes the unconditional probability of rejecting a measurement x  and 
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is the probability of correct recognition of the patterns of the measurements. The 
probability e(t) of accepting a pattern for classification and incorrectly classifying it is 
known as error rate given by: 

 
. )()(1)( trtcte −−=  (11) 

A correct recognition can be done if given an error rate (error probability) the 
reject rate (reject probability) is minimized. In this work, a parametrization to 
illustrate its effect on error and reject rate as well as the minimum risk for three 
classes is introduced following the work by Chow (1970) for the case of two classes.   

Assuming two classes and a pattern x  with equal prior probability of occurrence, 
p(w1) = p(w2) =1/2, the condition for rejection (Eq. (4)) can never be satisfied when t 
> ½; this can be explained by the fact that the minimum value which [ ])(max xwp ii

 

can attain is 1/n since )(max)(1
1

xwpnxwp i
i

n

i i ≤=∑ =
; using Eq. (4) the 

threshold rule nt /11−≤  can be obtained (Chow (1970); Webb (2002)) to activate 
the rejection option. The reject rate is always zero if t exceeds 1/2, therefore t only 
can have values in the range 0≤t≤1/2. To estimate r(t) and e(t) two normal 
distributions ( ) )2/exp()2/1()( 22 σμπσ ii xwxp −−=  are assumed with 

means 1μ  and 2μ  ( 1μ > 2μ ) and equal covariance 2σ . Chow (1970) used the 
following parametrization: 

σ
μμ 21

2
−

=s , 
 

(12) 

which describes the separation between the means of the distributions and is the only 
parameter of the distributions that r(t) and e(t) depend upon. The error and reject rates 
can be expressed using the standard cumulative distribution function 

( ) dxx
z

∫ ∞−
−=Φ )2/exp(

2
1z 2

π
as: ( )a)( Φ=te  and ( ) ( )ab)( Φ−Φ=tr , 

where a = - 2s /2-ln(1/t-1)/ 2s  and b=- 2s /2+ln(1/t-1)/ 2s  (Chow, 1970) . Figure 1, 

shows results of error and reject rate in terms of the threshold t and 4,3,2,12 =s . 
All curves tend to zero when t=1/2 and to 1 when t=0 proving consistency with the 
threshold rule when n=2. The results for two classes are now compared with results in 
the case of three classes. 
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Fig. 1.  Reject and error rate in terms of threshold t for two classes considering several 

values of the parameter 2s are shown. 

3. Estimation of Error and Reject Rate and Risk for Three Classes 

3.1 Error and Reject rate 

Accordingly with previous section, to calculate the error rate, Eq. (11), it is necessary 
to have the reject rate and the probability of correct recognition; to obtain such results 
the prior class-conditional probability density functions ( )iwxp  for each class is 
needed. In the case of three classes, assuming a Gaussian distribution, these  can be 
found as follows: 

( ) ( )22 2/)(

2
1 σμ

σπ
ix

i ewxp −−= . 
 

(13) 

In this case a parametrization is introduced after a change of variable in terms of the 
means and standard deviation as follows: σμ /)( 1−= xy , 2s  (given by Eq. 12) 

and σμμ /)( 133 −=s . After some algebra and arranging terms in Eq. (13) (for 
i=1,2,3), the corresponding prior class-conditional probability density functions for 
three classes are: 
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The posterior probability densities for each class p(w1| y ), p(w2| y ) y p(w3| y ) are 
now given using eq. (14) in Eq.(5). 

It can be seen that Eq. (5) allows easy visualization of the intersection points for 
different values of  3s  and 2s  facilitating to calculate the area under the reject rate 
curve, as shown in Figure 2a. Two reject regions can be found, the first between the 
intersection points of p(w1| y ) and p(w2| y ) with (1-t), and the second between the 
intersection of p(w2| y ) and p(w3| y ) with (1-t) (Figure 2b).  
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(b) 

Fig. 2. (a) Probability densities considering threshold t calculated from Eq. (3) assuming equal 
class probabilities; (b) a posterior probability densities estimated using Eq. (5); where the 

horizontal dashed line represents (1-t) the horizontal threshold; i = 1, 2, 3 indicates the three 
class-condition probabilities used in the calculations. The threshold t varies between the 

interval (0 ≤ t ≤ 2/3) in the case of three classes. 

The error and reject rate for two cases 13 =s , 5.02 =s   and 23 =s , 12 =s  are 
shown in Figure 3; here it can be seen that the limits of error rate and reject rate 
corresponds to the maximum value of threshold t =2/3 for three classes and with a 
minimum value in t=0. Hence, this proves the consistency with the threshold rule 

nt /11−≤  when n=3. It can be observed that the curves for e and r in the case of 
three classes shown in Figure 3 are different of those for two classes described in 
Figure 1. 

3.2 Decision Rule for the Minimum Risk. 

In the previous section, the decision rule was such that the selected class has the 
maximum posterior probability p(wi| y ) minimizing the probability of making an 
error. Therefore, a new decision rule that minimizes the expected loss or risk is 
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described in Webb (2002); this is very important since in many applications the costs 
associated with misclassification depend upon the true class of the patterns as well as 
the class to be assigned. This loss is a measure of the cost of making the decision that 
a pattern belongs to class wi when the true class is wj.  
The conditional risk of assigning a pattern y  to class wi can be defined as (Webb, 
2002)  

∑
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  when  y topattern  a assigning ofcost jiji wyw ∈=λ . 
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In this case, a reject option can be introduced to establish a Bayes decision rule in 
terms of the conditional risk, the reject region *R can be defined by 

{ }tylR i

i
>= )(min*  (Webb, 2002); the decision rule is to accept a pattern y and 

assign it to a class  iw if  tylyl j

j

j ≤= )(min)(  and reject y if 

tylyl j

j

j >= )(min)( , this decision is equivalent to make a definition of a region 

0,1 0,2 0,3 0,4 0,5 0,6 0,7
0,0

0,2

0,4

0,6

0,8

1,0

e

e 
or

 r

t

 S3=1,S2=0.5
 S3=2,S2=1

r

 
Fig. 3. Estimation of error (e) and reject (r) rate in terms of threshold t for three classes 

assuming 13 =s , 5.02 =s (solid line) and 23 =s , 12 =s (dash line). 
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in which is valid a constant conditional risk tyl =)(0 , so that the Bayes decision 

rule is: to assing y  to class  iw if  )()( ylyl ji ≤ with j=0, 1...,n. This implies that 

the Bayes decision rule for minimum risk (Webb,2002) gives the minimum risk *r  
given by  

∫∫ =
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A
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(16) 

In this work, the expression in previous equation is used to calculate the minimum 
conditional risk in terms of the threshold t for the case of three classes. The posterior 
probability densities p(wi| y ) and the threshold t are used to describe two regions 
which are disjoined and complete the reject region. The posterior probability densities 
contribute to the reject options used for the calculation of minimum conditional risk 
defined in Eq. (16).  

Using the Eq. (15), the conditional risk for the case of three classes can be written 
as: 
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1 ywpywpywpyl λλλ ++=  
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(17c) 

A loss function that has been used extensively in practice because of its simplicity 
and sensibility is the symmetrical or zero-one loss function. Then, Eq. (15b) results 
in: 
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(18) 

This function assigns no loss to a correct decision, and assign a unit loss otherwise, 
thus, all errors are equally costly. Therefore, minimizing the Bayes risk corresponds 
to maximizing the posterior probability (Webb, 2002). Considering Eq. (15b) or Eq. 
(18) it can be found that all the terms in the diagonal of Eq. (17) are zero.  

After calculations, the minimum risk r* for three classes can be calculated with Eq. 
(16) as shown in Figure 4 in terms of the threshold t, the parameters considered here 
are 1=s , 5.02 =s   and 23 =s , 12 =s . In this Figure 4 it is shown the minimum 
risk in terms of threshold. The results are consistent with fact that the risk goes to zero 
when t=0 and is maximum when t=2/3. The best performance of a pattern recognition 
system is realized when this minimum risk is reached.  
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Fig. 4. Minimum risk r* in terms of threshold t for three classes, with parametrization 

13 =s , 5.02 =s (dash)  and 23 =s , 12 =s (solid). 

4  Conclusion 

The Bayes decision rule to obtain the reject rate for a pattern recognition system for 
the case of three classes was estimated. A simple parametrization to illustrate the error 
rate as function for a given threshold was proposed. It was showed the validity of the 
threshold rule nt /11−≤  in the case of three classes. It was discussed that when a 
threshold t, which partitions the measurement space, is fixed, determination of the 
minimum risk and error rate is allowed. It was showed that through the definition of 
the threshold t a more efficient pattern recognition system can be reached if the 
minimum risk is known.  
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