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Abstract. The performance of a pattern recognition system is characterized by
its error rate and the reject rate tradeoff. The error rate can be directly evaluated
from the reject function assuming a threshold t, which is a parameter that limits
the reject and acceptance regions. In this paper, optimum rejection rule of a
recognition system for three classes is used to calculate the reject function and
the error rate evaluated directly from the reject rate. A Bayes decision rule as a
function of threshold t is used to determine the minimum risk. A simple
parametrization that considers the distance between means of the normal
distribution of classes is presented. Finally, the rejection rate, the error rate and
conditional risk were estimated in terms of the threshold t to illustrate the effect
of the proposed parametrization and Bayes decision rule for minimum risk.
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1 Introduction

It is known that the Bayes error provides the lowest error rate for a given pattern
classification problem. An optimum rejection rule and a general relation between the
error and reject probabilities are presented by Chow (1970). There are several
classical approaches used to estimate or to find bounds of the Bayes error including
those proposed by Thumar et al. (1966) and Doermann (2004) which considered the
second order dependency between the class and decision, and found that a combined-
based method renders better estimates than the classical methods of dependency-
based product approximation (DBPA). Pierson (1998) used boundary methods for
estimating class separability since it does not require knowledge of the posterior
distributions. In this work, optimum rejection rule of a recognition system to calculate
the reject function and the error rate evaluated directly from reject rate and the results
are illustrated for a case involving three classes, commonly found in actual
classification problems but hardly described in the literature. The Bayes decision rule
for minimum error and reject option for n classes considering the minimum risk,
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assuming a threshold t with a simple parametrization for a three class case is
described.

2 Background

2.1 Decision Rule for Minimum Error and Reject Option

In actual classification problems where classes are not fully separable, it is unrealistic
to expect absolute classification performance of the pattern recognition system. The
object of a statistical classification problem is to reach the best possible performance.
The question that arises is how to determine the optimum classification rate which can
be answered by the determination of the Bayes error since the Bayes decision rule
provides the lowest error rates (Tumer, 1996).
In general, to assign a pattern X to n classes wi (where i =1,...,n), a model for
classification with a decision rule to partition the measurement space into n regions
Qi, i =1,..., n is needed. The boundaries between the regions Qi are known as the
decision boundaries or decision surfaces; usually it is near to these boundaries that the
highest probability of misclassifications can occur. In such situations, the decision on
the pattern may be withheld or rejected until further information is available, this
option is known as the reject option (Webb, 2002).

According to the Bayes decision rule where assigning with minimum error a
pattern ¥ to a class wi, we have that:

pw)>pw,) ki=L.,nk#i, )]

where p(w,),..., p(w,),are known prior probabilities.

The optimum decision rule is to reject a pattern X if the maximum of the posterior
probabilities does not exceed some predefined threshold t, which can take values
between 0 and 1 (0 < t <1). (Chow, 1970; Pierson, 1998). More explicitly, the

optimum recognition rule is to accept the pattern X and to classify it as belonging to
the kth class whenever the following is true:

p(w)p(xw,) = p(w)p(xw,) . )

and
PR PG = (1= pOw)plxw,) 3

and to reject the pattern whenever:
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max|p(w,) p(xw) < (1=0 p(w) () “
i=1

The term (1-t) (see Figure 2) indicates the maximum values that can be assigned to
the posterior probability p(wi|* ) to do a correct classification of a measurement
pattern.Through Bayes’s theorem, this posterior probability function is related to the
class conditional density by:

_ paw) p(w;) ®)
plw,|x) = ——————,
p(x)

where

p(x) = ip(wi )p(aw,) ©

is the probability of pattern Xx. The class probability distributions p(w;) can be
estimated using an iterative method with the patterns belonging to each class (Baram,
1999).

For any fixed value of t, the decision rule (this is used for the correct classification
of samples) partitions the pattern space into two disjointed sets (or regions) A(¢) and
R(?) given by:

A(t) = p|max p(w,) p(xjw,) = (1= 1) p(x) . -

R(t) = fmax p(w,) p(xw,) < (1=0) p(x)}|, o

where A(f) is the acceptance region which implies that once the maximum
posterior probability exceeds the threshold (1-t), a classification decision can be
made; R(?) is the rejection region where the equations (3) and (4) hold. The integral of
regions A(f) and R(f) defines the reject rate r(t) and correct classification c(?)
expressed as:

r)=| pxdx, ®)
R(1)
which describes the unconditional probability of rejecting a measurement x and

e(t)= [, max[pw) p(aw)Jd, (10)
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is the probability of correct recognition of the patterns of the measurements. The
probability e(?) of accepting a pattern for classification and incorrectly classifying it is
known as error rate given by:

e(t)=1-c(t)—r(1). (11)

A correct recognition can be done if given an error rate (error probability) the
reject rate (reject probability) is minimized. In this work, a parametrization to
illustrate its effect on error and reject rate as well as the minimum risk for three
classes is introduced following the work by Chow (1970) for the case of two classes.

Assuming two classes and a pattern x with equal prior probability of occurrence,
p(w) = p(w,) =1/2, the condition for rejection (Eq. (4)) can never be satisfied when ¢

x)]

X); using Eq. (4) the

> Y2, this can be explained by the fact that the minimum value which max [p(wi

can attain is 1/n since 1= z;p(wi‘x) < nmax p(w,
i

threshold rule £ <1—1/7 can be obtained (Chow (1970); Webb (2002)) to activate
the rejection option. The reject rate is always zero if ¢ exceeds 1/2, therefore t only
can have values in the range 0<t<1/2. To estimate r(f) and e(f) two normal

distributions p(x‘ w,)=(1/02r) exp(—(x - U, )2 /2%) are assumed with

means 4, and W, (4,>/,) and equal covariance o’ . Chow (1970) used the
following parametrization:

5, :%, (12)

which describes the separation between the means of the distributions and is the only
parameter of the distributions that () and e(¢) depend upon. The error and reject rates
can be expressed using the standard cumulative distribution function

D(z)= J;;fwexp(—xz/Z)dxas: e(t)=®(a) and 7(1)=®(b)-®(a),

where a = -5,/2-In(1/-1)/s, and b=-s,/2+In(1/-1)/5, (Chow, 1970) . Figure 1,
shows results of error and reject rate in terms of the threshold 7and s, =1, 2, 3,4 .

All curves tend to zero when =1/2 and to 1 when =0 proving consistency with the
threshold rule when n=2. The results for two classes are now compared with results in
the case of three classes.
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eorr

Fig. 1. Reject and error rate in terms of threshold ¢ for two classes considering several

values of the parameter §, are shown.

3. Estimation of Error and Reject Rate and Risk for Three Classes

3.1 Error and Reject rate

Accordingly with previous section, to calculate the error rate, Eq. (11), it is necessary
to have the reject rate and the probability of correct recognition; to obtain such results

the prior class-conditional probability density functions p(x|wi) for each class is

needed. In the case of three classes, assuming a Gaussian distribution, these can be
found as follows:

1 (e—(x—/z,-f /20" ) 13)

P(X|Wi)=m

In this case a parametrization is introduced after a change of variable in terms of the
means and standard deviation as follows: y =(x—,)/ 0, s, (given by Eq. 12)
and §; =(4; — 4,)/ O . After some algebra and arranging terms in Eq. (13) (for

i=1,2,3), the corresponding prior class-conditional probability density functions for
three classes are:
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(14)

plw)= = e t=7)

Joro

The posterior probability densities for each class p(wi| ), p(W2| ¥ ) y p(ws| ¥ ) are

now given using eq. (14) in Eq.(5).
It can be seen that Eq. (5) allows easy visualization of the intersection points for

different values of §; and s, facilitating to calculate the area under the reject rate

curve, as shown in Figure 2a. Two reject regions can be found, the first between the
intersection points of p(w,| ¥ ) and p(w,| ¥ ) with (1-f), and the second between the

intersection of p(w| ¥ ) and p(ws| ¥ ) with (1-7) (Figure 2b).
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Fig. 2. (a) Probability densities considering threshold ¢ calculated from Eq. (3) assuming equal
class probabilities; (b) a posterior probability densities estimated using Eq. (5); where the
horizontal dashed line represents (1-¢) the horizontal threshold; i = 1, 2, 3 indicates the three
class-condition probabilities used in the calculations. The threshold ¢ varies between the
interval (0 <t <2/3) in the case of three classes.

The error and reject rate for two casess; =1, 5, =0.5 and 5, =2,5, =1 are
shown in Figure 3; here it can be seen that the limits of error rate and reject rate
corresponds to the maximum value of threshold ¢ =2/3 for three classes and with a
minimum value in =0. Hence, this proves the consistency with the threshold rule

t <1—=1/n when n=3. It can be observed that the curves for e and r in the case of

three classes shown in Figure 3 are different of those for two classes described in

Figure 1.
3.2 Decision Rule for the Minimum Risk.

In the previous section, the decision rule was such that the selected class has the

maximum posterior probability p(w;| ¥ ) minimizing the probability of making an
error. Therefore, a new decision rule that minimizes the expected /oss or risk is
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eorr

Fig. 3. Estimation of error (e) and reject () rate in terms of threshold ¢ for three classes

assuming §; = 1, §, = 0.5 (solid line) and Sy = 2 .8, = 1 (dash line).

described in Webb (2002); this is very important since in many applications the costs
associated with misclassification depend upon the true class of the patterns as well as
the class to be assigned. This loss is a measure of the cost of making the decision that
a pattern belongs to class w; when the true class is w;

The conditional risk of assigning a pattern ) to class w; can be defined as (Webb,

2002)

oY =S"2 p(wly).
() ;g; 2w, y) 158

where

_ . . 1
A;; = cost of assigning a pattern y tow, when y e w; . (15b)

In this case, a reject option can be introduced to establish a Bayes decision rule in
terms of the conditional risk, the reject region R *can be defined by

R* = imjnl ‘(y) > t} (Webb, 2002); the decision rule is to accept a pattern ) and

1

assign it to a class w, if  I/(y)=minl’/(y)<¢ and reject yif
J

I’(y)=minl’(y)>t, this decision is equivalent to make a definition of a region
j
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in which is valid a constant conditional risk /°(y) =1, so that the Bayes decision
rule is: to assing y to class w. if I'(y)<1[’(y) with /=0, 1...n. This implies that

the Bayes decision rule for minimum risk (Webb,2002) gives the minimum risk r
given by

. o (16)
r'= [ tp(dy+ | minI'(y)p(y)dy.

In this work, the expression in previous equation is used to calculate the minimum
conditional risk in terms of the threshold # for the case of three classes. The posterior
probability densities p(w; ) and the threshold ¢ are used to describe two regions

which are disjoined and complete the reject region. The posterior probability densities
contribute to the reject options used for the calculation of minimum conditional risk
defined in Eq. (16).

Using the Eq. (15), the conditional risk for the case of three classes can be written
as:

1(0)= Ay pOR[Y) + Aoy pO02|9)+ A1 0O ), 17a)

P(y)= Ay pOW[p) + Ay, pOWy|y) + A3y p(w3[ ), (17b)
(17¢)

lS(y)= A3 p(w1|y)+/123 p(w2|y) + 133P(W3|y)-

A loss function that has been used extensively in practice because of its simplicity
and sensibility is the symmetrical or zero-one loss function. Then, Eq. (15b) results

m:
0ifiz
A =1 eI (18)
Tolifi# g

This function assigns no loss to a correct decision, and assign a unit loss otherwise,
thus, all errors are equally costly. Therefore, minimizing the Bayes risk corresponds
to maximizing the posterior probability (Webb, 2002). Considering Eq. (15b) or Eq.
(18) it can be found that all the terms in the diagonal of Eq. (17) are zero.

After calculations, the minimum risk 7* for three classes can be calculated with Eq.
(16) as shown in Figure 4 in terms of the threshold ¢, the parameters considered here

ares =1, s, =0.5 and s, =2, 5, = 1. In this Figure 4 it is shown the minimum

risk in terms of threshold. The results are consistent with fact that the risk goes to zero
when =0 and is maximum when =2/3. The best performance of a pattern recognition
system is realized when this minimum risk is reached.
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Fig. 4. Minimum risk * in terms of threshold ¢ for three classes, with parametrization
s; =1, 5, =0.5(dash) and 55 =2,5, =1(solid).

4 Conclusion

The Bayes decision rule to obtain the reject rate for a pattern recognition system for
the case of three classes was estimated. A simple parametrization to illustrate the error
rate as function for a given threshold was proposed. It was showed the validity of the
threshold rule # <1—1/n in the case of three classes. It was discussed that when a
threshold ¢, which partitions the measurement space, is fixed, determination of the
minimum risk and error rate is allowed. It was showed that through the definition of
the threshold ¢ a more efficient pattern recognition system can be reached if the
minimum risk is known.
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